[17] トロコイド曲線を使用した歯車

図 17.1 トロコイド曲線を使用した歯車

17.1 概要

インナーロータの歯数、アウターロータの歯底円直径および偏 心量を基準として、それぞれの歯形を決定します. 歯形曲線は、 ころがり円直径や偏心量によって変化し、生成した歯形から、各 部屋の面積計算を行い吐出量(cc/rev)を算出します.また、3次 元歯形で表示します.

17.2 諸元入力画面

- (1) ロータ諸元の入力画面を図 17.2 に示します.
- (2) サーキュラーピッチの変更により歯の大きさを変更すること ができます.
- (3) クリアランスを与えた歯形を生成することができます.
- (4) アウターロータの歯底部分はフルRまたは任意のRで接続す ることができます.
- (5) ころがり円直径により歯形曲線を変更することができます.
- (6) 歯幅は叶出量の計算及び三次元の歯形表示に使用します.
- (7) 歯形生成分割角度は、歯形の細かさの尺度です.

🕞 歯形諸元 📃 🗖 💌								
項目	記号	単位	インナーロータ	アウターロータ				
歯 数	z		8	9				
偏心量	е	mm	1.5000					
サーキュラピッチ	CP	mm	9.42478					
ころがり円直径	Rb	mm	1.5000					
歯底円直径	df	mm	29.6757	40.5000				
歯先円直径	da	mm	35.6757	32.6757				
基準円直径	d	mm	24.0000	27.0000				
チップクリアランス	ck	mm	0.0000					
歯底逃げ量	cb	mm		0.9122				
歯底R フルR接続 ∨	rf	mm		2.7136				
歯幅	b	mm	18.0000					
製品内径/製品外径	Di/OD	mm	12.0000	45.0000				
押付チップクリアランス	cko	mm	0.0000					
歯形計算項目	記号	単位	數 値					
歯形生成分割角度	λ	deg	0.10569					
確定 キャンセル クリア								

図 17.2 ロータ諸元の設定

17.3 ロータの歯形図

ロータのかみ合い組図を図 17.3 に示します.また、補助機能に よりピッチ円の作図やインナーロータの回転角度を変更した図を 作図(拡大図)することができます.図17.4 にロータの歯形座標 を表示します.

図 17.3 歯形図

- 1	台 形	インナーロータ 〜				
補	間方式	円頭補間 🗸				
補	間積度	直線補間	1			
No.	K座槽(m)	Y座標(m)	R中心X(nn)	R中心Y(m)	R(mn)	回転方向
1	-6.82625	16.48002	-5.52828	13.34909	3.38932	CN
2	-6.21849	16.66738	-5.50696	13.18868	3.55073	CW
3	-5.98430	16.70717	-5.51935	13.11518	3.62197	CW
4	-5.75445	16.72950	-5.55321	13.25185	3.48347	CN
5	-5.52867	16.73523	-5.55755	13.74633	2.98904	CW
6	-5.30678	16.72484	-5.53477	13.85634	2.87755	CW
7	-4.66330	16.59875	-5.50692	13.95981	2.77050	CW
8	-4.35434	16.47918	-5.57422	13.80172	2.94226	CN
9	-4.15305	16.37799	-6.26931	12.53411	4.38794	CW
10	-3 95489	18 28204	-8 08221	9.61222	7 81802	CW.

図 17.4 座標

17.4 面積計算

歯形計算後,各面積および吐出量を図17.5に示します.図中の [×]マークは、ロータ歯形の接点を示します.

図 17.5 面積と吐出量

17.5 レンダリング図

歯形レンダリングを図 17.8 に示します. 図 17.9 のコントロール フォームにより視点や回転角を変更することができ、歯形図に接 触線を観察することができます. 図 17.10, 図 17.11 に作図例を示 します.

17.6 歯形 DXF 出力

①インナーロータ歯形, ②アウターロータ歯形を DXF ファイ ルでおよび 3D-IGES ファイルで出力することができます. 図 17.8 に設定フォームを, 図 17.9 および図 17.10 に CAD 作図例を示し ます.

図 17.8 CAD ファイル出力設定

[18] Adduction differential gear design system

図 18.1 Adduction differential gear

18.1 概要

Adduction differential gear (愛称:ピンコイド歯車)は、外歯車 と内歯車に1歯差または2歯差を与えた内転差動式の歯車減速装 置です.インボリュート歯形を用いて同じ機構を成立させること ができますが、効率やかみ合い干渉の点からも内歯車にピンを配 置する歯形が有利と言えます.

18.2 諸元入力

- (1) 歯車諸元の入力画面を図 18.2 に示します.
- (2) 最大歯数差は,2 歯です.
- (3) 外歯車の歯形は、内歯車のピン径と、ころがり円および偏心 量から決定します.
- (4) 外歯車の歯厚管理用に、またぎ歯数を設定します.

項目	記号	単位	外歯車	内歯車					
モジュール	mn	mm	2.000000						
歯 数	z		20	21					
ピン径	Pq	mm		3.5000					
基準円直径	d	mm	40.0000	42.0000					
偏心量	е	mm	0.8500						
転がり円直径	dw	mm	40.0000	41.7000					
またぎ歯数	ZW		5						
またぎ歯厚	W	mm	25.1412						
歯先円直径	da	mm	40.2000	38.5000					
歯底円直径	df	mm	36.8000	41.9000					
製品外径	od	mm	50.0	000					
歯幅	Ь	mm	12.0	000					
		確定	キャンセル	クリア					

図 18.2 諸元入力

18.3かみ合い図

図 18.3 にかみ合い図を示します. 部分拡大(図 18.4) でピンと 外歯のかみ合いの接触位置を確認することができます.

18.4 歯形レンダリング

図 18.5 に歯形レンダリングを示します. X,Y,Z 軸で観察角度の 変更ができ、Z 軸移動量で拡大,縮小ができます. また、レンダ リングを □ Rotation で回転させることができます.

図 18.5 歯形レンダリング

18.5 偏心量を変更した歯形

外歯車の歯形は, 偏心量および転がり円直径で変化します. ここでは図 18.2 の歯車で偏心量を 1.3mm に変更した歯形を図 18.6 に示しますが, 僅かな偏心量の違いで歯形が大きく変わっています (悪い歯形の例です).

図 18.6 歯形図 (e=1.3mm)

18.6 DXF ファイル出力

図 18.7 に CAD データ出力設定を示します.また, CAD 作図例 を図 18.8 および図 18.9 に, 歯形 txt データを図 18.10 に示します.

18.7 強度計算

歯面に発生するヘルツ応力を図18.11で計算します.本例では, 外歯車歯形の接触直径が Dc=38.5mm (図 18.12) のヘルツ応力が $\sigma_H=44.3$ MPa となりヘルツ応力と許容ヘルツ応力の比を示します. なお,歯車材料の許容応力は,図 18.13 のように表の中から選択 することができますが,図 18.11 で任意に設定することもできま す.

